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The main objective of this work is to study the correlation between composition, microstructure, processing
and properties of doped ceria. Doped ceria with heterovalent cations can be used as solid electrolyte for
solid oxide fuel cells working at intermediate temperatures (SOFC-IT). This study is made in order to obtain
information, which can be useful for further improvement of this type of materials. Multivariate analysis
techniques, such as Principal Component Analysis (PCA) and Self-Organizing Maps (SOMs) were used on a
database consisting of 18 samples which differ by composition and by processing methods. Experimental
data regarding these samples consisted in information about composition, SEM images and the property of
choice, the electrical conductivity. SEM images were digitally processed to isolate grain boundaries; on the
18 resulting images it was computed the Fractal Dimension, as a parameter containing both information
about size and shape of the grains, therefore characterising the microstructure. All results were, then,
subjected to Multivariate analysis taking into account, also, the processing methods. The aim is to extract
useful information from the available experimental data. Results encourage us to assume that even
identification and diagnose can become possible based on the present work, given an adequate database.
The overall procedure can be applied to any crystalline material.
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Correlations within parts or even on the entire chain
composition, microstructure, processing, properties are
mandatory in materials science, for obvious reasons.
Correlations can be obtained i) by an empirical analysis of
the results or ii) by using various computational [analysis]
techniques [1-3]. In case i), the success of the analysis
depends on the experience of the research team; however,
comparisons can become, in some cases, subjects to long
and unproductive debates as the process of extracting the
information depends on particular experiences. On the
other hand, case ii) offer a common platform for analysis
and interpretation. Nowadays, computational methods
allow to design a material at all scales; multiscale
modelling would be highly desirable to tailor material
properties. The main drawbacks – except for the built in
issues, for example the selection of a particular approach
in ab initio methods or a specific potential and so on to
mesoscale and macroscale modelling – are their
computational costs and their specificity. Hence, the need
to use techniques and methodologies that are both simple
and effective and can include also experimental results
within their overall workflow. In this paper, it was developed
such a methodology.

One of the representative electrolyte materials for a high
temperature solid oxide fuel cell is zirconia-based oxide
because of its attractive ionic conductivity. If lower
temperatures are to be considered, the ionic conductivity
of ceria-based oxide is higher than that of zirconia-based
electrolytes. As lower working temperatures are desired
nowadays, ceria-based oxide was found to be a promising
material in order to function as a solid electrolyte [4-7].

Samarium or gadolinium doped ceria in literature had
been reported to provide the highest electric conductivities
among the family of ceria doped materials; the explanation
lies in the relationship between the ionic radius of the

dopant used and the cation ionic radius of the host lattice
[8-10]. In his work, Kim [11] proposed a critical ionic radius
for the dopant, which would give the same lattice constant
as that of the electrolyte without any additive in his structure.
But, according to Kilner et al. and Catlow [12, 13] a smaller
difference between the ionic radius of the host and the
dopant is preferable for obtaining a high conductivity,
because this way the lattice will keep its symmetry.

Improving performance of solid oxide electrolytes mean
to increase the ionic conductivity of the ceria-based
electrolytes [14]. Understanding the various factors that
influence ionic conductivity can help to optimise the
properties of doped ceria.

In this paper, the effects in terms of composition,
microstructure, and processing on the properties for ceria-
based electrolytes are studied. With this purpose in mind,
there were used 18 different types of samples in terms of
the factors listed above. These factors are fully related to
each other as shown in figure 1.

Various compositions and several processing methods
were considered in order to get a wider picture of the
correlations between all these factors. Compositional
features (such as atomic percentages of Ce, lattice
parameter) and all processing methods and conditions

Fig. 1. Correlations composition, processing, microstructure and
properties
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were known for 18 different samples. Two main ideas were
considered in constructing this paper: a) the methodology
has the most importance; b) experimentals have to be
different and available in a large number. Referring to point
b), as a consistent database was needed (made of wide-
ranging combinations of compositional features and
processing methods that lead to an important volume of
results), reported data were used [15-20]. Specific image
analysis techniques were used to define and isolate grain
boundaries on SEM images of the materials. Once the
contours were isolated, Fractal Dimension (FD) was
computed on the resulting images; FD was intended to
describe microstructural features. Electric conductivity
was selected as property. All these quite different
parameters were then analysed by PCA and SOMs
techniques, by using the processing method as criterion
for classification. Patterns of correlations between
parameters and similarities between samples were
extracted; they explain and support by analysis our
expectations. Score plots reveal that samples were grouped
in distinct clusters, allowing the identification of the
influence of various parameters; the most important
finding was that each processing method has its own
projection space on the two Principal Components. The
consequence is that, based on this methodology one can
even identify or diagnose, provided a relevant database is
supplied and regardless the material. Our recent results on
using this methodology (with some variations in the
selection of the parameters, due to the inner specificity)
on another material – cement clinker – that is interesting
for its mechanical properties, confirmed the reliability of
the method.

The ionic conductivity of electrolytes can be maximized
by properly altering composition; this can be done by
selecting an appropriate heterovalent dopant and its optimal
concentration.

Ceria has a fluorite-type structure, which remains stable
from room temperature to its melting point ~2400°C. At
temperature of 1300°C, part of Ce4+ ions are reduced to
Ce3+, to form anionic vacancies. However, despite this fact,
pure CeO2 do not provide significant ionic conductivity. In
order to achieve high ionic conductivity, oxygen vacancies
are to be created into the structure via substitution of host
Ce4+ by acceptor cations.

The ionic conductivity reaches a maximum at dopant
concentration of about 10-20 mol. % depending on the type
of dopant. This phenomenon is typically associated with
the interactions of oxygen vacancies with dopant cation,
and forms local defect structures. The conductivity is
further influenced by the size of dopant, binding the energy
of the oxide ion with the host cation and migration enthalpy
of the mobile ions [21].

Processing conditions are another area that can greatly
influence the electrical conductivity of electrolytes. These
include different sintering processes in order to prepare
ceramics with a controlled microstructure (grain size,
density). Different sintering conditions will result in diverse
characteristics in the microstructures of the electrolyte
such as grain size, grain boundary phases, and phase
segregation on the boundaries, agglomeration, and relative
density.

The ionic conductivity varies strongly with the sintering
conditions of the electrolyte, for example it was observed
the high values of grain boundary resistance at sintering
temperatures below 1300°C due to the low relative density
of the electrolyte, also, was observed the linear correlation
between grain boundary conductivity and porosity. A
microstructure with a relative density greater than 90% is

therefore an essential requirement for a high-performance
ionic conductor [22].

The samples used in this paper were obtained both
through conventional method (solid-state reaction) and
unconventional methods (sol-gel, coprecipitation, Pechini,
hydrothermal).

The total ionic conductivity of a polycrystalline
electrolyte depends upon the contribution from both grain
and grain boundary.

The first zone is within the grains, which is the zone of
high ionic conduction, and is separated by poorly
conducting, thin grain boundaries. Due to positive space-
charge at the grain boundaries, oxygen vacancies and holes
positive charge carriers) are depleted, while the electrons
or acceptor dopants are accumulated near the grain
boundary region. The increase of the temperature lead to
a reduction of the grain boundary resistance; the
temperature at which the grain boundary blocking effect
becomes negligible is dependent on the dopant
concentration.

In order to analyse the microstructure of a polycrystalline
material it was used Scanning Electron Microscopy (SEM);
SEM images obtained provide a qualitative analysis. In order
to integrate SEM images in a multivariate analysis it needs
to be defined by a numeric value, so it was calculated the
fractal dimension (FD) [23]. This parameter has been
chosen as containing simultaneously shape information
and size of the particles (but not for the fractal nature of
the grains). Calculation of fractal dimension can be done
by Richardson method or the method of counting boxes
(box-counting). In this paper it was used the second
method, i.e. box-counting [24].

Experimental part
The synthesis of solid electrolytes we deal with in this

paper has been done by various methods, both conventional
(solid-state reaction) and unconventional (sol-gel, co-
precipitation, hydrothermal, Pechini).

SEM images corresponding to 18 different samples were
digitally processed in order to detect and isolate grain
boundaries. On resulting images, fractal dimension were
computed. [Note: Fractal dimension was not intended here
to address a possible self-similarity of the grain contour.
Instead, FD was used because it provides a single value
that can be further processed to extract correlations; it is
also useful because it includes information about both
shape and size of the grains and, if it is the case, about the
texture. Moreover, grains placed at the edges of the SEM or
optical microscopy images do not have, typically, closed
contours, thus being useless to obtain other parameters
(equivalent diameters, shape factors etc.). The database
concerning composition, processing conditions,
microstructure and properties was further analysed by PCA-
Principal Component Analysis and SOM-Self Organizing
Maps methods. These methods can be used when dealing
with parameters of different nature and of various orders
of magnitude, on complex databases concerning diverse
fields of application  [25] for more information and results
on these methods). Results were interpreted in terms of
extracting information. It is considered that such a study,
involving multivariate analysis methods can contribute to
the development and optimization of ceria-base
electrolytes, furthermore, the overall methodology can be
applied to any polycrystalline material with virtually no
modification.

The value of fractal dimension is given by the shape and
the grain size as well as irregularities of the grain
boundaries. The procedure is shown schematically in figure
2 and is described in steps in the next section.
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Fig. 2. Fractal Dimension (FD) obtaining procedure from
SEM images

Fig. 3. FD values depending on the
number of grains in a given image

Table 1
 SEM IMAGES, GRAIN BOUNDARIES AND FD VALUES USED FOR

CORRELATION
Remark: processed SEM images were obtained at various

magnifications

Edge Detection techniques were employed to identify
and isolate grain boundaries in SEM images (fig. 2). In short,
SEM images were processed within ImageJ environment:
images were digitized and various filters were applied:
Threshold, Edge Detection, Erode/Dilate. Threshold values
were selected specifically on each image. On the resulting
images containing only grain boundaries, Fractal Dimension
(FD) has been computed, also in ImageJ by covering the
image with a grid, and then count how many boxes of the
grid are covering part of the microstructure. Then it does
the same thing but using a finer grid with smaller boxes.
By shrinking the size of the grid repeatedly, it ends up more
accurately capturing all the microstructure. Using the box
counting method, fractal dimension is the slope of the line
obtained by plotting the value of log (counts) on the Y-axis
against the value of log (box size) on the X-axis. Counts
defines the number of boxes that covers the grains
boundaries, and the box size is the dimension of the boxes
used for each magnification of the grid.

Results and discussions
Before processing the images, it was tested whether

the image size, expressed as the area which includes a
different number of grains on which is performed the
calculation, influences the value of fractal dimension.

After applying the procedure sketched in figure 3 it was
found that the value of fractal dimension for all areas
considered (different numbers of grains) does not change
significantly, the difference is at the 3-digit after the decimal
point. As a consequence, it was inferred that magnification
scale of the SEM result will have a very small impact on
the results.

For all SEM images it was computed the Fractal
Dimension, FD. The samples used have different
compositions and various methods of processing, and heat
treatments were carried out at various temperatures.

In this paper, the fractal dimension of a microstructure
do not express the self-similar feature of the grain boundary,
it just defines grain size and shape and irregularity of grain
boundaries (if there is any).

Table 1 collects all 18 samples of different ceria-doped
materials with their grain boundaries on which it was
computed the FD, according to the procedure sketched in
figure 2.

These types of microstructures, well densified, are
obtained by both conventional and unconventional
methods, conventional ones are characterized by sintering
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time of more than 4 hours, or additional heat treatments,
because usually the grains of raw materials are
micrometre scale. Instead, for unconventional methods
long sintering time are not necessary because the grains
of obtained powders are nanometre scale with high
specific surface, this way the reactivity is high and the
heat required for the reactions to occur is lower.

Fractal dimension values   were found to be in the range
1.306 and 1.587; minimum values are for samples with
large grain size and high densities, otherwise, high values
are characterizing the fine-grained samples with low
densities.

PCA analysis is a good candidate when an analysis deals
with many influencing factors, which can be very different
in nature, orders of magnitude and units, and normally
cannot be explained by analyzing two-dimensional plots.
Thus, this method allows representation of data (which
should be in multidimensional space, which is impossible)
in two-dimensional space through two Principal
Components.

Influencing factors considered here are:
-the lattice parameter (a [Å]) that includes the changes

made by dopant in the crystal structure and the influence
of the processing method.

- processing methods (M) of the samples used to analyse
various factors that influence the ionic conductivity are
unconventional (M1) Sol-gel: E9, E10, E11 [16], (M2)
Coprecipitation: E12, E13, E14, E15, E16 [17], (M3)
hydrothermal: E17 [18], (M4) Pechini: P18 [19], and
conventional (M0) solid-state reaction: E1, E2 – our own
samples, E3, E4, E5, E6, E7 - [15], E8 [20]. Also, the
processing methods include: presintering/calcination
temperature (T1 [°C]), the sintering temperature (T2 [°C])
and sintering time (St [h]).

- the microstructure is defined by the fractal dimension
(FD), a dimensionless parameter which contains
information about grain size and shape.

- total electrical conductivity (σ·10-2 [S·cm-1]) measured
at 600°C, which is the property of choice for a solid
electrolyte.

Also, for PCA analysis it was used the atomic percentage
of cerium (Ce [at. %]) from the solid solutions considered.

Table 2 contain the centralized data of various factors
that influence ionic conductivity necessary for analysis;
the aim is to reveal correlations composition – processing
– microstructure – properties.

PCA analysis was performed on two data sets, Data Set
1 (all parameter values) and Data Set 2 (without lattice
parameter values), in order to make a comparison between
results.

In both cases, PCA analysis performed on parameter
values (fig. 4), indicates the importance of the type of
method used (conventional or unconventional) and the
temperatures at which heat treatments were performed.
This is evidenced by the proximity on the Principal
Component 1 axis (which explains 51.9% of the variance
of the data) and especially the value that it takes on the
respective Principal Component. By comparing the two
plots, it can be observed, when lattice parameter values
are used, that the Loadings plot is slightly altered. From
these findings, it resulted that lattice parameter a is not an
influential parameter. Lattice parameter is known to be
dependent on the nature and concentration of the dopant;
it was rejected for now but it should be further studied
exactly how influential it is, maybe in another combination
of parameters.

Also, it can be noticed the opposite behaviour of atomic
percentages of cerium and conductivity over PC2. This
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Table 2
CENTRALIZED DATA TO BE USED IN THE ANALYSIS

Fig. 4. PCA results – Loadings plots
reveal relationships between

parameters

behaviour is due to the concentration of vacancies formed
by replacing cerium with different dopants. Thus, when
cerium is replaced by an excessive amount of divalent or
trivalent cations, clusters are formed, though inducing
bidimensional defects in structure. These ones affect in a
negative way the migration of oxygen ions; if it is too low,
it doesn’t form a sufficient number of vacancies in order to
ensure a high ion conductivity.

The total conductivity and sintering time are located in
the same area, so it can be expected that there is a
relationship between them. When the samples are kept
for a longer time at the given temperature, the grains are

increasing in size, the fractal dimension decreases and
conduction occurs mainly within grains (and less
contribution can be attributed to grain boundaries
conduction); overall, the total conduction increases. It can
be concluded that π is strongly influenced by St. viewed as
groups of parameters, the group (σ and St) has a negative
correlation to the group (Ce and FD).

The processing temperatures present an opposite
behaviour to fictional method index (the numerical value
is not important here – it only denotes the methods). For
example, when the method has the lowest index, which is
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Fig. 5. PCA results – Score plots show
similarities between records. Records are

automatically put in classes (distinct
clusters, due to the Method’s index, M0-M4)

Fig. 6. Self Organizing Maps
(SOMs) results show poor

similarities between
parameters

0 (solid-state reaction method) the processing
temperatures are higher than the temperatures required
for wet  methods, because the powders obtained by
unconventional methods are nanometric scale (in this
cases it is not necessary a high temperature for the
reactions and densification to work).

By analysing figure 5, it can be seen that samples are
automatically grouped corresponding to each processing
method. Score plots will be further correlated with
Loadings.

Along PC1 the most influential parameters are T1 and
T2. Among all results these 2 parameters have the most of
the influence over the materials obtained by the
conventional method M0 (which was to be expected).
Parameters T1 and T2 less influence the results when M3
processing conditions are used (M3 – hydrothermal
method, in this case the sample did not required a
presintering or calcination treatment before sintering and
the temperature of sintering (T2) was  1350°C, which was
the lowest one of all).

In figure 5 a, clusters corresponding to methods M1, M2
and M4 overlap at a certain extent; this could be explained
by the fact that, although the materials were obtained using
different dopants and different concentrations, the lattice
parameters have similar values   for some of these
materials. By eliminating the lattice parameter a  from
analysis, the clusters become distinct (fig. 5 b).

M0 group of samples lays along the entire PC2. An
interesting interpretation can be made by considering the
influence of the conductivity. When correlating with the
loadings plot (fig. 4) it can be observed that two samples
are characterized by very high values of conductivity, the
other two (in the lower part) have very small values,
another two samples are placed on the horizontal axis of

PC1, where average values are to be found and the other
two have relatively high values.

Self-Organizing Maps (SOMs) analysis has been made,
also, and the results are shown in figure 5.

The results of SOMs analysis validate at a certain extent
the results of the PCA method. The method of synthesis,
M, and heat treatment temperatures (T1 and T2) are well
correlated, and this correlation can be easily seen. The two
heat treatment temperatures have similar behaviours while
being opposite to the processing method.

The other parameters cannot be related to each other
by using this method, but partially. To achieve better results
with this method, the number of records (samples) should
be increased.

Conclusions
The main objective was to study the correlations

between composition, processing, microstructure and
properties by means of multivariate analysis methods
(Principal Component Analysis and Self Organizing Maps).

In this regard, we used 18 data sets that have a wide
range of compositions, with different combinations of
dopants, methods of processing (both conventional and
unconventional), various heat treatment temperatures, and
different resulting microstructures.

Relationships between parameters and similarities
between records were extracted and explained, from both
structural and experimental viewpoints (different
processing conditions lead to different microstructures).

Microstructure features, such as grain size and shape
were quantified by computing the fractal dimension (FD
was not used here for assessing the fractal nature but as a
parameter). The procedure used here can be easily ported
to any other polycrystalline material.
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Results can be used for identification or diagnose of an
unknown or partially unknown polycrystalline material; this
inference can be founded on the fact that score plots in
PCA revealed a good separation of the records in distinct
clusters concerning materials obtained by different
methods.

PCA was performed using the Excel add-in Multibase package
(Numerical Dynamics, Japan). SOM analysis was performed using
Peltarion Synapse. Image analysis has been made by using ImageJ
tools.
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